题目内容
2.(1)求证:CB平分∠ACE;
(2)若BE=3,CE=6,求线段AB的长.
分析 (1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果;
(2)如图2,连接BD,通过△DBC∽△CBE,得到比例式,列方程可得结果.
解答 解:(1)证明:如图1,连接OB,![]()
∵AB是⊙0的切线,
∴OB⊥AB,
∵CE丄AB,
∴OB∥CE,
∴∠1=∠3,
∵OB=OC,![]()
∴∠1=∠2,
∴∠2=∠3,
∴CB平分∠ACE;
(2)如图2,连接BD,OB,
∵CE丄AB,
∴∠E=90°,
∴BC=$\sqrt{B{E}^{2}+C{E}^{2}}$=3$\sqrt{5}$,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠E=∠DBC,
∴△DBC∽△CBE,
∴$\frac{CD}{BC}=\frac{BC}{CE}$,
∴BC2=CD•CE,
∴CD=$\frac{45}{6}$=$\frac{15}{2}$,
∴OB=$\frac{15}{4}$,
∵OB⊥AE,CE⊥AE,
∴OB∥CE,
∴△ABO∽△AEC,
∴$\frac{AB}{AE}$=$\frac{OB}{CE}$,
∴$\frac{AB}{AB+3}$=$\frac{\frac{15}{4}}{6}$,
∴AB=5.
点评 本题考查了切线的性质,勾股定理,相似三角形的判定和性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.
练习册系列答案
相关题目
10.下列各对数中,互为相反数的是( )
| A. | +(-2)和-2 | B. | -(-2)和-|-2| | C. | -(-2)和|-2| | D. | -(-2)和+(+2) |
11.
如图所示是一种“牛头形”图案,其作法是:从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,依此类推下去,若正方形1的边长为16cm,则正方形6的边长为( )
| A. | 1cm | B. | 2$\sqrt{2}$cm | C. | 3cm | D. | 4cm |