题目内容

20.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=4,则四边形MABN的面积是36.

分析 首先连接CD,交MN于E,由将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,即可得MN⊥CD,且CE=DE,又由MN∥AB,易得△CMN∽△CAB,根据相似三角形的面积比等于相似比的平方,相似三角形对应高的比等于相似比,即可得$\frac{{S}_{△CMN}}{{S}_{△CAB}}$=($\frac{CE}{CD}$)2=$\frac{1}{4}$,又由MC=6,NC=4,即可求得四边形MABN的面积.

解答 解:连接CD,交MN于E,
∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
∴MN⊥CD,且CE=DE,
∴CD=2CE,
∵MN∥AB,
∴CD⊥AB,
∴△CMN∽△CAB,
∴$\frac{{S}_{△CMN}}{{S}_{△CAB}}$=($\frac{CE}{CD}$)2=$\frac{1}{4}$,
∵在△CMN中,∠C=90°,MC=6,NC=4,
∴S△CMN=$\frac{1}{2}$CM•CN=$\frac{1}{2}$×6×4=12,
∴S△CAB=4S△CMN=4×12=48,
∴S四边形MABN=S△CAB-S△CMN=48-12=36.
故答案为:36.

点评 此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质,此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网