题目内容

如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=__度.

135 【解析】试题分析:首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案. 【解析】 连接EE′ ∵△ABE绕点B顺时针旋转90°到△CBE′ ∴∠EBE′是直角,∴△EBE′是直角三角形, ∵△ABE与△CE′B全等 ∴BE=BE′=2,∠AEB=∠BE′C ∴∠BEE′=∠BE′E=45°, ...
练习册系列答案
相关题目

方程3x=12的解有___个,不等式3x<12的解有____个.

1 无数 【解析】解方程3x=12,可得x=4,所以方程只有一个解,解不等式3x<12,可得x<4,知不等式的解有无数个. 故答案为:1;无数.

计算得( )

A. B. C. D. 2

D 【解析】试题分析: = = = = =2. 故选D.

一个事件发生的概率不可能是(  )

A. 0 B. 1 C. D.

D 【解析】因为一个事件发生的概率不可能大于1,故选D.

如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )

A. 3cm B. 4cm C. 5cm D. 6cm

A 【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长. 解答:【解析】 设CN=xcm,则DN=(8-x)cm,由折叠的性质知EN=DN=(8-x)cm, 而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8-x)2=16+x...

如图所示,在?ABCD中,E为AD中点,CE交BA的延长线于F,若BC=2AB,∠FBC=70°,则∠EBC的度数为__度.

35 【解析】∵ABCD, ∴AB=CD,DC∥AB, ∴∠ECD=∠EFA, ∵DE=AE,∠DEC=∠AEF, ∴△DEC≌△AEF, ∴DC=AF, ∴AB=AF. ∵BC=2AB,AB=AF, ∴BC=BF, ∴△FBC为等腰三角形, 再由△DEC≌△AEF,得EC=EF, ∴∠EBC=∠EBF=∠CBF=×70°=3...

一个口袋中装有5个红球,3个白球,1个绿球,摸到白球的频率______摸到绿球的频率(填“大于”“小于”或“等于”)

大于 【解析】由题意知这个口袋中装有5个红球,3个白球,1个绿球,共有5+3+1=9个球,摸到红球的概率是,摸到白球的概率是,摸到红球的概率是,因此,摸到白球的概率大于摸到绿球的概率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网