题目内容

16.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).
解:∵∠BAE+∠AED=180°(已知)
∴AB∥CD(同旁内角互补,两直线平行)
∴∠BAE=∠CEA( 两直线平行,内错角相等  )
又∵∠1=∠2
∴∠BAE-∠1=∠AEC-∠2即∠MAE=∠NEA
∴AM∥NE (内错角相等,两直线平行)
∴∠M=∠N (两直线平行,内错角相等).

分析 先根据平行线的判定,得到AB∥CD,再根据平行线的性质,得出∠MAE=∠NEA,进而得出AM∥NE,最后根据平行线的性质即可得到结论.

解答 解:∵∠BAE+∠AED=180°(已知)
∴AB∥CD(同旁内角互补,两直线平行)
∴∠BAE=∠CEA( 两直线平行,内错角相等  )
又∵∠1=∠2
∴∠BAE-∠1=∠AEC-∠2,即∠MAE=∠NEA
∴AM∥NE (内错角相等,两直线平行)
∴∠M=∠N (两直线平行,内错角相等)
故答案为:CD,同旁内角互补,两直线平行,∠CEA,∠NEA,AM,内错角相等,两直线平行,两直线平行,内错角相等.

点评 本题主要考查了平行线的性质与判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网