“五•四”青年节,市团委组织部分中学的团员去西山植树.某校九年级(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有__棵.

121 【解析】【解析】 设市团委组织部分中学的团员有x人,则树苗有(4x+37)棵,由题意得: 1≤(4x+37)﹣6(x﹣1)<3 去括号得:1≤﹣2x+43<3, 移项得:﹣42≤﹣2x<﹣40, 解得:20<x≤21. ∵x取正整数,∴x=21, 当x=21时,4x+37=4×21+37=121,则共有树苗4×21+37=121棵. 故答案...

不等式组的解集是_________.

﹣1<x<3 【解析】根据“小大大小中间找”的原则求出不等式组的解集即可. ∵﹣1<3, ∴此不等式组的解集为:﹣1<x<3. 故答案为:﹣1<x<3.

要使代数式有意义,则x的取值范围是( )

A.x≥2 B.x≥-2 C.x≤-2 D.x≤2

A. 【解析】 试题分析:根据题意,得 x-2≥0, 解得,x≥2; 故选A.

如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上

(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;

(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

(1)见解析;(2)见解析. 【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO; (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论. 试题解析: 证明:(1)选取①②, ...

如图,在?ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为________.

36° 【解析】试题分析:∵四边形ABCD是平行四边形, ∴∠D=∠B=52°, 由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°, ∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°-∠EAD′-∠D′=108°, ∴∠FED′=108°-72°=36°; 故答案为:36°.

如图,□ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N。

(1)求证:四边形CMAN是平行四边形。

(2)已知DE=4,FN=3,求BN的长。

(1)详见解析;(2)5. 【解析】 试题分析:(1)通过AE⊥BD,CF⊥BD证明AE∥CF,再由四边形ABCD是平行四边形得到AB∥CD,由两组对边分别平行的四边形是平行四边形可证得四边形CMAN是平行四边形;(2)证明△MDE≌∠NBF,根据全等三角形的性质可得DE=BF=4,再由勾股定理得BN=5. 试题解析:(1)证明:∵AE⊥BD CF⊥BD ∴AE∥CF ...

如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )

A. 6 B. 12 C. 20 D. 24

D 【解析】试题分析:在Rt△CBE中,由勾股定理可求得EC=5,又因AC=10,所以AE=EC=5.根据对角线互相平分的四边形是平行四边形可判定四边形ABCD是平行四边形,所以平行四边形ABCD的面积为BC×BD=4×6=24,故答案选D.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网