题目内容

如图,在?ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为________.

36° 【解析】试题分析:∵四边形ABCD是平行四边形, ∴∠D=∠B=52°, 由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°, ∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°-∠EAD′-∠D′=108°, ∴∠FED′=108°-72°=36°; 故答案为:36°.
练习册系列答案
相关题目

如果不等式ax+4<0的解集在数轴上表示如图,那么a的值为____.

-2 【解析】解不等式ax+4<0得, 由数轴上可得:不等式的解集为: ,则 解得: . 故答案为

若不等式组有解,则a的取值范围是__________________.

a≤2 【解析】∵x≤2且x≥a,要使2者有公共部分,必须满足:a≤2. ∴a的取值范围是a≤2.

不等式﹣2x<4的解集是(  )

A. x>2 B. x<2 C. x<﹣2 D. x>﹣2

D 【解析】两边同时除以﹣2,得:x>﹣2. 故选D.

如图,在?ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;

(2)连接DE,若AD=2AB,求证:DE⊥AF.

(1)证明见解析(2)证明见解析 【解析】试题分析:(1)由在?ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论. 试题解析:(1)∵四边形ABCD是平行四边形, ∴AB∥DF, ∴∠ABE=∠FCE, ∵E为BC中点, ∴BE=C...

如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是(  )

A. EF=CF B. EF=DE C. CF<BD D. EF>DE

B 【解析】试题分析:∵DE是△ABC的中位线, ∴DE∥BC,DE=BC, ∵CF∥BD, ∴四边形BCFD是平行四边形, ∴DF=BC,CF=BD, ∴EF=DF-DE=BC-DE=BC=DE. 故选B.

如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为(  )

A. 4S1 B. 4S2 C. 4S2+S3 D. 3S1+4S3

A 【解析】试题分析:设等腰直角三角形的直角边长为a,中间小正方形的边长为b,则另两个直角三角形的边长分别为a-b,a+b,所以S1=,S2=,S3=,平行四边形的面积=2S1+2S2+S3=++=2=4S1,故答案选A.

如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:

①线段MN的长;

②△PAB的周长;

③△PMN的面积;

④直线MN,AB之间的距离;

⑤∠APB的大小.

其中会随点P的移动而变化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

B 【解析】试题分析: ①、MN=AB,所以MN的长度不变; ②、周长C△PAB=(AB+PA+PB),变化; ③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变; ④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变; ⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化。 故选:B

如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.

(1)求二次函数与一次函数的解析式;

(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.

(1)抛物线解析式为y=x2+4x+3,一次函数解析式为y=﹣x﹣1;(2)由图象可知,满足(x+2)2+m≥kx+b的x的取值范围为x?﹣4或x≥﹣1. 【解析】(1)先利用待定系数法先求出m,再求出点B坐标,利用方程组求出太阳还是解析式. (2)根据二次函数的图象在一次函数的图象上面即可写出自变量x的取值范围. 【解析】 (1)∵抛物线y=(x+2)2+m经过点A(﹣1,0...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网