题目内容

20.计算:
(1)$\frac{2}{{\sqrt{2}-1}}+\sqrt{18}-4\sqrt{\frac{1}{2}}$
(2)$(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})-{(\sqrt{3}-\sqrt{2})^2}$.

分析 (1)首先化简二次根式,进而合并求出答案;
(2)直接利用乘法公式化简二次根式进而得出答案.

解答 解:(1)$\frac{2}{{\sqrt{2}-1}}+\sqrt{18}-4\sqrt{\frac{1}{2}}$
=$\frac{2(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}$+3$\sqrt{2}$-2$\sqrt{2}$
=2$\sqrt{2}$+2+3$\sqrt{2}$-2$\sqrt{2}$
=3$\sqrt{2}$+2;

(2)$(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})-{(\sqrt{3}-\sqrt{2})^2}$
=5-2-(3+2-2$\sqrt{6}$)
=3-5+2$\sqrt{6}$
=-2+2$\sqrt{6}$.

点评 此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网