题目内容
12.(1)求反比例函数和一次函数的表达式;
(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.
分析 (1)利用待定系数法即可求得函数的解析式;
(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.
解答 解:(1)∵反比例函数y=$\frac{m}{x}$(m≠0)的图象过点A(3,1),
∴3=$\frac{m}{1}$
∴m=3.
∴反比例函数的表达式为y=$\frac{3}{x}$.
∵一次函数y=kx+b的图象过点A(3,1)和B(0,-2).
∴$\left\{\begin{array}{l}{3k+b=1}\\{b=-2}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=1}\\{b=-2}\end{array}\right.$,
∴一次函数的表达式为y=x-2;
(2)令y=0,∴x-2=0,x=2,
∴一次函数y=x-2的图象与x轴的交点C的坐标为(2,0).
∵S△ABP=3,
$\frac{1}{2}$PC×1+$\frac{1}{2}$PC×2=3.
∴PC=2,
∴点P的坐标为(0,0)、(4,0).
点评 本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S△ABP=S△ACP+S△BCP列方程是关键.
练习册系列答案
相关题目
4.下列各数中无理数有( )
-$\sqrt{0.9}$,3.141,-$\frac{22}{7}$,$\root{3}{-27}$,π,0,4.2$\stackrel{•}{1}$$\stackrel{•}{7}$,0.1010010001…,$\sqrt{0.1}$.
-$\sqrt{0.9}$,3.141,-$\frac{22}{7}$,$\root{3}{-27}$,π,0,4.2$\stackrel{•}{1}$$\stackrel{•}{7}$,0.1010010001…,$\sqrt{0.1}$.
| A. | 2个 | B. | 3 个 | C. | 4个 | D. | 5个 |
3.
在一年一度的国家学生体质侧试中,金星中学对全饺2000名男生的1000m测试成绩进行了抽查,学校从初三年级抽取了一部分男生的成绩,并制作成统计表,绘制成频数直方图.
(1)在这个问题中,总体是什么?
(2)直接写出a,b,c,d的值.
(3)补全频数直方图.
(4)初中毕业生体能测试项目成绩评定标准是男生1000m不超过4′20″(即260秒)为合格,你能估计出该校初中男生的1000m的合格人数吗?如果能,请求出合格的人数;如果不能,请说明理由.
| 序号 | 范围(单位:秒) | 频数 | 频率 |
| 1 | 170<x≤200 | 5 | 0.1 |
| 2 | 200<x≤230 | 13 | a |
| 3 | 230<x≤260 | 15 | 0.3 |
| 4 | 260<x≤290 | c | d |
| 5 | 290<x≤320 | 5 | 0.1 |
| 6 | 320<x≤350 | 2 | 0.04 |
| 7 | 350<x≤380 | 2 | 0.04 |
| 合计 | b | 1.00 |
(2)直接写出a,b,c,d的值.
(3)补全频数直方图.
(4)初中毕业生体能测试项目成绩评定标准是男生1000m不超过4′20″(即260秒)为合格,你能估计出该校初中男生的1000m的合格人数吗?如果能,请求出合格的人数;如果不能,请说明理由.