题目内容
14.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.
(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.
分析 (1)根据方程有两个不相等的实数根可得△=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,求出k的取值范围;
(2)首先判断出两根均小于0,然后去掉绝对值,进而得到2k+1=k2+1,结合k的取值范围解方程即可.
解答 解:(1)∵原方程有两个不相等的实数根,
∴△=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,
解得:k>$\frac{3}{4}$;
(2)∵k>$\frac{3}{4}$,
∴x1+x2=-(2k+1)<0,
又∵x1•x2=k2+1>0,
∴x1<0,x2<0,
∴|x1|+|x2|=-x1-x2=-(x1+x2)=2k+1,
∵|x1|+|x2|=x1•x2,
∴2k+1=k2+1,
∴k1=0,k2=2,
又∵k>$\frac{3}{4}$,
∴k=2.
点评 本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是利用根的判别式△=b2-4ac>0求出k的取值范围,此题难度不大.
练习册系列答案
相关题目