题目内容

4.在Rt△ABC中,∠C=90°,BC=1,AC=$\sqrt{3}$,则下列结论中,正确的是(  )
A.sinA=$\frac{\sqrt{3}}{2}$B.tanA=$\frac{\sqrt{3}}{3}$C.cosB=$\frac{\sqrt{3}}{2}$D.tanB=$\frac{\sqrt{3}}{3}$

分析 根据勾股定理求出AB的长,根据锐角三角函数的定义解答即可.

解答 解:∵∠C=90°,BC=1,AC=$\sqrt{3}$,
∴AB=$\sqrt{B{C}^{2}+A{C}^{2}}$=2,
sinA=$\frac{BC}{AB}$=$\frac{1}{2}$,A不正确;
tanA=$\frac{BC}{AC}$=$\frac{\sqrt{3}}{3}$,B正确;
cosB=$\frac{BC}{AB}$=$\frac{1}{2}$,C不正确;
tanB=$\frac{AC}{BC}$=$\sqrt{3}$,D不正确;
故选:B.

点评 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网