题目内容
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:EB=EC;
(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.
![]()
![]()
【考点】切线的性质;正方形的性质;圆周角定理.
【专题】证明题.
【分析】(1)连接OD,由BC是⊙O的切线得出∠BCA=90°,由DE是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.
(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.
【解答】(1)证明:连接OD,
∵AC是直径,∠ACB=90°,
∴BC是⊙O的切线,∠BCA=90°.
又∵DE是⊙O的切线,
∴ED=EC,∠ODE=90°,
∴∠ODA+∠EDB=90°,
∵OA=OD,
∴∠OAD=∠ODA,
又∵∠OAD+∠DBE=90°,
∴∠EDB=∠EBD,
∴ED=EB,
∴EB=EC.
(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,
又∵ED=EB,
∴△DEB是等腰直角三角形,则∠B=45°,
∴△ABC是等腰直角三角形.
![]()
![]()
【点评】本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接OD得垂直,构造出等腰三角形,利用“等角的余角相等解答.
练习册系列答案
相关题目