ÌâÄ¿ÄÚÈÝ
9£®Èçͼ1£¬ÔÚÖ±½Ç×ø±êϵÖУ¬µãB£¨a£¬b£©ÔÚµÚÒ»ÏóÏÞ£¬ÇÒ$\sqrt{a-4}$+b2-8b+16=0£¬¹ýB×÷xÖᣬyÖáµÄ´¹Ïß·Ö±ð½»ÓÚA¡¢C£®£¨1£©ÇóBµÄ×ø±êºÍËıßÐÎOABCµÄÃæ»ý£®
£¨2£©Ö±Ïßy=2x+8½»xÖáÓÚE£¬½»yÖáÓÚF£¬ËüÑØxÖáÕý·½ÏòÒÔÿÃëÒÆ¶¯1¸öµ¥Î»µÄËÙ¶È£¬ÉèÆ½ÒÆµÄʱ¼äΪtÃ룬ÎÊÊÇ·ñ´æÔÚtµÄÖµ£¬Ê¹Ö±ÏßEFƽ·ÖËıßÐÎOABCµÄÃæ»ý£¿Èô´æÔÚ£¬ÇótµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©Èçͼ2£¬PΪÕý·½ÐÎOABCµÄ¶à½ÇÏßACÉϵĵ㣨¶ËµãA£¬C³ýÍ⣩£¬PM¡ÍPO£¬½»Ö±ÏßABÓÚM£¬ÎÊ$\frac{PC}{BM}$µÄÖµÊÇ·ñ²»±ä£¿Çë¸ø³ö½áÂÛ£¬ÓèÒÔÖ¤Ã÷²¢ÇóÆäÖµ£®
·ÖÎö £¨1£©¸ù¾ÝÏ߶εÄÖеã×ø±êÇó·¨Çó½â£®
£¨2£©EµãµÄ×ø±êΪ£¨-4£¬0£©£¬µ±Ö±ÏßEFÆ½ÒÆµ½¹ýDµãʱÕýºÃƽ·ÖÕý·½ÐÎAOBCµÄÃæ»ý£¬ÉèÆ½ÒÆºóµÄÖ±ÏßΪy=2x+b£¬´úÈëDµã×ø±ê£¬ÇóµÃb=-2£®¿ÉÖªÆ½ÒÆµÄ¾àÀëΪ5£¬ËùÒÔt=5£»
£¨3£©¹ýPµã×÷NQ¡ÎOA£¬GH¡ÎCO£¬½»CO¡¢ABÓÚN¡¢Q£¬½»CB¡¢OAÓÚG¡¢H£¬Ò×Ö¤¡÷OPH¡Õ¡÷MPQ£¬ËıßÐÎCNPGΪÕý·½ÐΣ®¿ÉÖªPG=BQ=CN£¬¼´¿ÉÇóµÃ$\frac{PC}{BM}=\frac{\sqrt{2}}{2}$£®
½â´ð ½â£º£¨1£©¡ßÇÒ$\sqrt{a-4}$+b2-8b+16=$\sqrt{a-4}$+£¨b-4£©2=0£¬
¡àa-4=0£¬ÇÒb-4=0£¬
¼´a=4£¬b=4£®
µãBµÄ×ø±êΪ£¨4£¬4£©£®
¡àOA=AB=BC=CO=4£¬
¡àËıßÐÎOABCµÄÃæ»ýS=OA•AB=4¡Á4=16£®
£¨2£©µ±y=0ʱ£¬x=-4£¬
¡àEµãµÄ×ø±êΪ£¨-4£¬0£©£®
µ±Ö±ÏßEFÆ½ÒÆµ½¹ýDµãʱÕýºÃƽ·ÖÕý·½ÐÎAOBCµÄÃæ»ý£®
ÉèÆ½ÒÆºóµÄÖ±ÏßΪy=2x+b£¬´úÈëDµã×ø±ê£¬ÇóµÃb=-2£®
´ËʱֱÏߺÍxÖáµÄ½»µã×ø±êΪ£¨1£¬0£©£¬Æ½ÒƵľàÀëΪ5£¬ËùÒÔt=5Ã룮
£¨3£©¹ýPµã×÷NQ¡ÎOA£¬GH¡ÎCO£¬½»CO¡¢ABÓÚN¡¢Q£¬½»CB¡¢OAÓÚG¡¢H£¬
ÔÚ¡÷OPHÓë¡÷MPQÖУ¬
$\left\{\begin{array}{l}{OP=PM}\\{PH=PQ}\end{array}\right.$£¬
¡à¡÷OPH¡Õ¡÷MPQ£¬ËıßÐÎCNPGΪÕý·½ÐΣ®
¡àPG=BQ=CN£®
¡à$CP=\sqrt{2}PG=\frac{\sqrt{2}}{2}PM$£¬¼´$\frac{PC}{BM}=\frac{\sqrt{2}}{2}$£®
µãÆÀ Ö÷Òª¿¼²éÁ˺¯ÊýºÍ¼¸ºÎͼÐεÄ×ÛºÏÔËÓ㮽âÌâµÄ¹Ø¼üÊÇ»áÁé»îµÄÔËÓú¯ÊýͼÏóµÄÐÔÖʺͽ»µãµÄÒâÒåÇó³öÏàÓ¦µÄÏ߶εij¤¶È»ò±íʾÏ߶εij¤¶È£¬ÔÙ½áºÏ¾ßÌåͼÐεÄÐÔÖÊÇó½â£®
| A£® | 55¡ã | B£® | 30¡ã | C£® | 35¡ã | D£® | 40¡ã |