题目内容
16.(1)求证:PF平分∠BFD.
(2)若tan∠FBC=$\frac{3}{4}$,DF=$\sqrt{10}$,求EF的长.
分析 (1)根据切线的性质得到OE⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OE∥CD,根据平行线的性质得到∠EFD=∠OEF,由等腰三角形的性质得到∠OEF=∠OFE,根据角平分线的定义即可得到结论;
(2)连接PF,由BF是⊙O的直径,得到∠BPF=90°,推出四边形BCFP是矩形,根据tan∠FBC=$\frac{3}{4}$,设CF=3x,BC=4x,于是得到3x+$\sqrt{10}$=4x,x=$\sqrt{10}$,求得AD=BC=4$\sqrt{10}$,推出DF∥OE∥AB于是得到DE:AE=OF:OB=1:1即可得到结论.
解答 解:(1)连接OE,BF,PF,
∵∠C=90°,
∴BF是⊙O的直径,
∵⊙O与AD相切于点E,
∴OE⊥AD,
∵四边形ABCD的正方形,
∴CD⊥AD,
∴OE∥CD,![]()
∴∠EFD=∠OEF,
∵OE=OF,
∴∠OEF=∠OFE,
∴∠OFE=∠EFD,
∴EF平分∠BFD;
(2)连接PF,
∵BF是⊙O的直径,
∴∠BPF=90°,
∴四边形BCFP是矩形,
∴PF=BC,
∵tan∠FBC=$\frac{3}{4}$,
设CF=3x,BC=4x,
∴3x+$\sqrt{10}$=4x,x=$\sqrt{10}$,
∴AD=BC=4$\sqrt{10}$,
∵点E是切点,
∴OE⊥AD
∴DF∥OE∥AB
∴DE:AE=OF:OB=1:1
∴DE=$\frac{1}{2}$AD=2$\sqrt{10}$,
∴EF=$\sqrt{D{E}^{2}+D{F}^{2}}$=10.
点评 本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.
练习册系列答案
相关题目