题目内容
14.分析 由DE∥FG∥BC,可得△ADE∽△AFG∽△ABC,又由AD:DF:FB=3:2:1,利用相似三角形的面积比等于相似比的平方,即可求得S△ADE:S△AFG:S△ABC=9:25:36,然后设△ADE的面积是9a,则△AFG和△ABC的面积分别是25a,36a,即可求两个梯形的面积,继而求得答案.
解答 :∵DE∥FG∥BC,
∴△ADE∽△AFG∽△ABC,
∵AD:DF:FB=3:2:1,
∴AD:AF:AB=3:5:6,
∴S△ADE:S△AFG:S△ABC=9:25:36,
设△ADE的面积是9a,则△AFG和△ABC的面积分别是25a,36a,
则S四边形DFGE=S△AFG-S△ADE=16a,S四边形FBCG=S△ABC-S△AFG=11a,
∴S△ADE:S四边形DFGE:S四边形FBCG=9:16:11.
故答案为:9:16:11.
点评 此题考查了相似三角形的判定与性质.此题难度适中,解题的关键是掌握相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目
3.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取5次,记录如表:
(1)请你计算这两组数据的平均数,中位数和方差;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
| 甲 | 95 | 82 | 89 | 81 | 93 |
| 乙 | 83 | 92 | 80 | 95 | 90 |
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.