题目内容

14.解下列二元一次方程组
(1)$\left\{\begin{array}{l}{3x+y=7①}\\{2x-y=3②}\end{array}\right.$ 
(2)$\left\{\begin{array}{l}{2x-3y=-5①}\\{3x+2y=12②}\end{array}\right.$
(3)$\left\{\begin{array}{l}{\frac{x}{3}+1=y①}\\{2(x+1)-y=6②}\end{array}\right.$ 
(4)$\left\{\begin{array}{l}{\frac{x}{2}=\frac{y}{3}=\frac{z}{5}①}\\{x-2y+3z=22②}\end{array}\right.$.

分析 (1)利用①+②消去y,再解答即可;
(2)利用①×2+②×3消去y,再解答即可;
(3)利用代入法解答即可;
(4)先设$\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k$,得出x=2k,y=3k,z=5k,代入②解答即可.

解答 解:(1)①+②得:x=2,
把x=2代入②得:y=1,
所以方程组的解是:$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$;
(2)①×2+②×3得:x=2,
把x=2代入①得:y=3,
所以方程组的解是:$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$;
(3)把①代入②得:x=3,
把x=3代入①得:y=2,
所以方程组的解是:$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;
(4)设$\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k$,得出x=2k,y=3k,z=5k,代入②得:
k=2,
可得:x=4,y=6,z=10,
所以方程组的解:$\left\{\begin{array}{l}{x=4}\\{y=6}\\{z=10}\end{array}\right.$

点评 本题主要考查对解一元一次方程,解二元一次方程组等知识点的理解和掌握,能把二元一次方程组转化成一元一次方程是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网