题目内容
16.(1)求证:△AEF≌△DCE;
(2)若DC=$\sqrt{2}$,求BE的长.
分析 (1)根据矩形的性质和已知条件可证明△AEF≌△DCE;
(2)由(1)可知AE=DC,在Rt△ABE中由勾股定理可求得BE的长.
解答 (1)证明:在矩形ABCD中,∠A=∠D=90°,
∴∠AFE+∠AEF=90°,
∵EF⊥EC,
∴∠FEC=90°,
∴∠AEF+∠CED=90°,
∴∠AEF=∠CED,
在△AEF和△DCE中
$\left\{\begin{array}{l}{∠A=∠D}\\{∠AFE=∠CED}\\{EF=EC}\end{array}\right.$,
∴△AEF≌△DCE(AAS),
(2)解:由(1)得AE=DC,
∴AE=DC=$\sqrt{2}$,
在矩形ABCD中,AB=CD=$\sqrt{2}$,
在R△ABE中,AB2+AE2=BE2,即($\sqrt{2}$)2+($\sqrt{2}$)2=BE2,
∴BE=2.
点评 本题主要考查矩形的性质和全等三角形的判定和性质,在(1)中证得三角形全等是解题的关键,在(2)中注意勾股定理的应用.
练习册系列答案
相关题目
6.10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如表所示:
设两队队员身高的平均数依次为$\overline{{x}_{甲}}$,$\overline{{x}_{乙}}$,身高的方差依次为${S}_{甲}^{2}$,${S}_{乙}^{2}$,则下列关系中完全正确的是( )
| 队员1 | 队员2 | 队员3 | 队员4 | 队员5 | |
| 甲队 | 173 | 175 | 175 | 175 | 177 |
| 乙队 | 170 | 171 | 175 | 179 | 180 |
| A. | $\overline{{x}_{甲}}$=$\overline{{x}_{乙}}$,${S}_{甲}^{2}$>${S}_{乙}^{2}$ | B. | $\overline{{x}_{甲}}$=$\overline{{x}_{乙}}$,${S}_{甲}^{2}$<${S}_{乙}^{2}$ | ||
| C. | $\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,${S}_{甲}^{2}$>${S}_{乙}^{2}$ | D. | $\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,${S}_{甲}^{2}$<${S}_{乙}^{2}$ |