题目内容

5.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,求满足关于x的方程x2+px+q=0有实数根的概率.

分析 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x的方程x2+px+q=0有实数根的情况,继而利用概率公式即可求得答案.

解答 解:画树状图得:

∵x2+px+q=0有实数根,
∴△=b2-4ac=p2-4q≥0,
∵共有6种等可能的结果,满足关于x的方程x2+px+q=0有实数根的有(1,-1),
(2,-1),(2,1)共3种情况,
∴满足关于x的方程x2+px+q=0有实数根的概率是:$\frac{3}{6}$=$\frac{1}{2}$.

点评 此题考查的是用列表法或树状图法求概率与一元二次方程判别式的知识.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网