题目内容

10.如图所示,△ABC两个外角的平分线BP、CP相交于点P.
求证:点P在∠A的平分线上.

分析 过点P作PF⊥AD,PG⊥BC,PH⊥AE,然后根据角平分线上的点到角的两边的距离相等可得PF=PG=PH,再根据到角的两边距离相等的点在角的平分线上即可证明.

解答 证明:如图,过点P作PF⊥AD,PG⊥BC,PH⊥AE,
∵BP、CP分别是∠ABC、∠ACB的外角平分线,
∴PF=PG,PG=PH,
∴PF=PG=PH,
∴点P必在∠A的平分线上(到角的两边距离相等的点在角的平分线上).

点评 本题考查了角平分线上的点到角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上的性质,作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网