题目内容
10.求证:点P在∠A的平分线上.
分析 过点P作PF⊥AD,PG⊥BC,PH⊥AE,然后根据角平分线上的点到角的两边的距离相等可得PF=PG=PH,再根据到角的两边距离相等的点在角的平分线上即可证明.
解答
证明:如图,过点P作PF⊥AD,PG⊥BC,PH⊥AE,
∵BP、CP分别是∠ABC、∠ACB的外角平分线,
∴PF=PG,PG=PH,
∴PF=PG=PH,
∴点P必在∠A的平分线上(到角的两边距离相等的点在角的平分线上).
点评 本题考查了角平分线上的点到角的两边的距离相等的性质,到角的两边距离相等的点在角的平分线上的性质,作出辅助线是解题的关键.
练习册系列答案
相关题目
5.若|a+2|+(b-3)2=0,则ab的值为( )
| A. | 6 | B. | -6 | C. | 1 | D. | -5 |
19.现有相同个数的甲、乙两组数据,经计算得:$\overline{{x}_{甲}}$=$\overline{{x}_{乙}}$,且S甲2=0.35,S乙2=0.25,比较这两组数据的稳定性,下列说法正确的是( )
| A. | 甲比较稳定 | B. | 乙比较稳定 | C. | 甲、乙一样稳定 | D. | 无法确定 |