题目内容
19.分析 根据已知条件及相似三角形的判定方法结合图形和圆周角定理即可证明△ABC∽△BCE,然后根据相似三角形的性质即可得到结论.
解答 证明:∵AC平分∠BAD,
∴∠BAC=∠DAC,BC=CD,
∴∠DAC=∠CDE,∠BDC=∠DBC,
∴∠DBC=∠BAC,
∵∠DCE=∠ACD,∠ACB=∠BCE,
∴△ABC∽△BEC,
∴$\frac{AC}{BC}=\frac{CE}{BC}$,
∴BC2=AC•CE.
点评 本题考查了相似三角形的判定:
①有两个对应角相等的三角形相似;
②有两个对应边的比相等,且其夹角相等,则两个三角形相似;
③三组对应边的比相等,则两个三角形相似.
练习册系列答案
相关题目
9.将关于x的一元二次方程4ax(x-1)=4a2x-1化为一般形式,其一次项系数与常数项相等,则a的值为( )
| A. | $\frac{1}{2}$ | B. | -$\frac{7}{2}$ | C. | 0 | D. | -$\frac{1}{2}$ |