题目内容

10.完成下面推理过程:
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE=∠ABC.(两直线平行,同位角相等) 
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF=$\frac{1}{2}$∠ADE,
∠ABE=$\frac{1}{2}$∠ABC.(角平分线定义)
∴∠ADF=∠ABE
∴DF∥BE.(同位角相等,两直线平行)
∴∠FDE=∠DEB.(两直线平行,内错角相等)

分析 根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=$\frac{1}{2}$∠ADE,∠ABE=$\frac{1}{2}$∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.

解答 解:理由是:∵DE∥BC(已知),
∴∠ADE=∠ABC(两直线平行,同位角相等),
∵DF、BE分别平分ADE、∠ABC,
∴∠ADF=$\frac{1}{2}$∠ADE,
∠ABE=$\frac{1}{2}$∠ABC(角平分线定义),
∴∠ADF=∠ABE,
∴DF∥BE(同位角相等,两直线平行),
∴∠FDE=∠DEB(两直线平行,内错角相等),
故答案为:∠ABC,两直线平行,同位角相等,∠ADE,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.

点评 本题考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网