题目内容

如图,若AB∥CD,在下列三种情况下探究∠APC与∠PAB,∠PCD的数量关系.

(1)图①中,∠APC+∠PAB+∠PCD=
 

(2)图②中,
 

(3)图③中,写出∠APC与∠PAB,∠PCD的三者数量关系,并说明理由.
考点:平行线的性质
专题:几何图形问题,推理填空题
分析:三个图形中过P作PE与AB平行,由AB与CD平行,利用平行于同一条直线的两直线平行得到PE与CD平行,利用平行线的性质判断即可得到结果.
解答:解:(1)过P作PE∥AB,
∵AB∥CD,
∴PE∥CD,
∴∠A+∠APE=180°,∠EPC+∠C=180°,
∴∠APC+∠PAB+∠PCD=∠A+∠APE+∠EPC+∠C=360°;
(2)过P作PE∥AB,
∵AB∥CD,
∴PE∥CD,
∴∠A=∠APE,∠EPC=∠C,
∴∠APC=∠APE+∠EPC=∠PAB+∠PCD;
(3)∠APC=∠PCD-∠PAB,
理由为:过P作PE∥AB,
∵AB∥CD,
∴PE∥CD,
∴∠PAB+∠APE=180°,∠EPC+∠PCD=180°,
即∠APE=180°-∠PAB,∠EPC=180°-∠PCD,
∴∠APC=∠APE-∠EPC=∠PCD-∠PAB.
故答案为:(1)360°;(2)∠APC=∠PAB+∠PCD
点评:此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网