题目内容
考点:平行四边形的判定与性质
专题:证明题,数形结合
分析:首先连接EF,FG,GH,HE,由在平行四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA上的点,且AE=CG,BF=DH,易证得△AEH≌△CFG,即可得FG=EH,继而可得HG=EF,即可证得四边形EFGH为平行四边形,继而证得EG与FH互相平分.
解答:
证明:连接EF,FG,GH,HE,
∵四边形ABCD是平行四边形,
∴∠A=∠C,∠B=∠D,AB=CD,AD=BC,
∵AE=CG,BF=DH,
∴AH=CF,BE=DG,
在△AEH和△CFG中,
,
∴△AEH≌△CGF(SAS),
∴EH=GF,
同理:GH=EF,
∴四边形EFGH为平行四边形,
∴EG与FH互相平分.
∵四边形ABCD是平行四边形,
∴∠A=∠C,∠B=∠D,AB=CD,AD=BC,
∵AE=CG,BF=DH,
∴AH=CF,BE=DG,
在△AEH和△CFG中,
|
∴△AEH≌△CGF(SAS),
∴EH=GF,
同理:GH=EF,
∴四边形EFGH为平行四边形,
∴EG与FH互相平分.
点评:此题考查了平行四边形的判定与性质以及全等三角形的判定与性质.此题比较适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目