题目内容

17.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为(  )
A.40°B.50°C.55°D.60°

分析 首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.

解答 解:连接OC,
∵CE是⊙O的切线,
∴OC⊥CE,
即∠OCE=90°,
∵∠COB=2∠CDB=50°,
∴∠E=90°-∠COB=40°.
故选A.

点评 本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网