题目内容
考点:含30度角的直角三角形,等腰三角形的判定与性质,勾股定理
专题:
分析:在DC上截取DE=BD,连接AE,求出AB=AE,求出∠B=∠AEB,根据∠B=2∠C和∠AEB=∠C+∠EAC求出∠EAC=∠C,推出AE=CE=2DE=2BD=BE,设DE=a,则AE=CE=BE=2a,在Rt△ADE中,由勾股定理得出AD2+DE2=AE2,求出a=
,得出DE=
,CD=3
,在Rt△ADC中,由勾股定理求出AC即可.
| 3 |
| 3 |
| 3 |
解答:解:
在DC上截取DE=BD,连接AE,
∵CD=3BD,
∴CE=2BD=2DE,
∵BD=DE,AD⊥BE,
∴AB=AE,
∴∠B=∠AEB,
∵∠B=2∠C,
∴∠AEB=2∠C,
∵∠AEB=∠C+∠EAC,
∴∠EAC=∠C,
∴AE=CE=2DE=2BD=BE,
设DE=a,则AE=CE=BE=2a,
在Rt△ADE中,由勾股定理得:AD2+DE2=AE2,
∴32+a2=(2a)2,
a=
,
∴DE=
,CD=3
,
在Rt△ADC中,由勾股定理得:AC=
=6.
在DC上截取DE=BD,连接AE,
∵CD=3BD,
∴CE=2BD=2DE,
∵BD=DE,AD⊥BE,
∴AB=AE,
∴∠B=∠AEB,
∵∠B=2∠C,
∴∠AEB=2∠C,
∵∠AEB=∠C+∠EAC,
∴∠EAC=∠C,
∴AE=CE=2DE=2BD=BE,
设DE=a,则AE=CE=BE=2a,
在Rt△ADE中,由勾股定理得:AD2+DE2=AE2,
∴32+a2=(2a)2,
a=
| 3 |
∴DE=
| 3 |
| 3 |
在Rt△ADC中,由勾股定理得:AC=
32+(3
|
点评:本题考查了等腰三角形的性质和判定,线段的垂直平分线,勾股定理,三角形的外角性质等知识点的综合运用,题目综合性比较强,有一定的难度.
练习册系列答案
相关题目
已知点(a,
)是y=kx与y=-
两函数图象的一个交点.则k=( )
| 3 |
| ||
| x |
| A、1 | ||
| B、-1 | ||
C、
| ||
D、-
|
| A、32005 |
| B、32004 |
| C、34010 |
| D、34009 |
若关于x的二次函数y=x2-2mx+1的图象与端点在(-1,1)和(3,4)的线段只有一个交点,则m的值可能是( )
A、
| ||
B、-
| ||
C、
| ||
D、
|