题目内容

如图,铁路上A、B两点(看作直线上的两点)相距40千米,C、D为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=24千米,BC=16千米,求两个村庄的距离.
考点:勾股定理的应用
专题:
分析:连接CD,作CE⊥AD于点E,根据AD⊥AB,BC⊥AB得到BC=AE,CE=AB,从而得到DE=AD-AE=24-16=8千米,利用勾股定理求得CD两地之间的距离.
解答:解:如图,连接CD,作CE⊥AD于点E,
∵AD⊥AB,BC⊥AB,
∴BC=AE,CE=AB,
∴DE=AD-AE=24-16=8千米,
∴CD=
DE2-CE2
=
82+402
=8
26
千米,
∴两个村庄相距8
26
千米.
点评:考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网