题目内容
5.一次函数y=kx+b中y随x的增大而减小且过点(1,-3),则其解折式为:y=-x-2. (写出一个即可)分析 设一次函数解析式为y=kx+b,根据一次函数的性质,k可取-1,然后把(1,-3)代入y=-x+b求出b的值即可得到一个满足条件的一次函数解析式.
解答 解:设一次函数解析式为y=kx+b,
∵函数值y随自变量x的增大而减小的,
∴k可取-1,
把(1,-3)代入y=-x+b得b=-2,
∴一次函数解析式为y=-x-2.
故答案为y=-x-2
点评 本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
练习册系列答案
相关题目
15.某品牌汽车生产厂为了占领市场提高销售量,对经销商采取销售奖励活动,在2015年10月前奖励办法以下表计算奖励金额,2015年10月后以新奖励办法执行.某经销商在新奖励办法出台前一个月共售出某品牌汽车的A型和B型共413台,新奖励办法出台后的第一个月售出这两种型号的汽车共510台,其中A型和B型汽车的销售量分别比新奖励办法出台前一个月增长25%和20%.2015年10月前奖励办法:
(1)在新办法出台前一个月,该经销商共获得奖励金额多少元?
(2)在新办法出台前一个月,该经销商销售的A型和B型汽车分别为多少台?
(3)若A型汽车每台售价为10万元,B型汽车每台售价为12万元.新奖励办法是:每销售一台A型汽车按每台汽车售价的a%给予奖励,每销售一台B型汽车按每台汽车售价的(a+0.2)%给予奖励.新奖励办法出台后的第二个月,A型汽车的销售量比出台后的第一个月增加了10a%; 而B型汽车受到某问题零件召回的影响,销售量比出台后的第一个月减少了20a%,新奖励办法出台后的第二个月该经销商共获得的奖励金额355680元,求a的值.
| 销售量(x台) | 每台奖励金额(元) |
| 0<x≤100 | 200 |
| 100<x≤300 | 500 |
| x>300 | 1000 |
(2)在新办法出台前一个月,该经销商销售的A型和B型汽车分别为多少台?
(3)若A型汽车每台售价为10万元,B型汽车每台售价为12万元.新奖励办法是:每销售一台A型汽车按每台汽车售价的a%给予奖励,每销售一台B型汽车按每台汽车售价的(a+0.2)%给予奖励.新奖励办法出台后的第二个月,A型汽车的销售量比出台后的第一个月增加了10a%; 而B型汽车受到某问题零件召回的影响,销售量比出台后的第一个月减少了20a%,新奖励办法出台后的第二个月该经销商共获得的奖励金额355680元,求a的值.