ÌâÄ¿ÄÚÈÝ
7£®¼ÆË㣺£¨1£©$\frac{2x}{x-2}+\frac{4}{2-x}$
£¨2£©£¨$\frac{1}{a-b}$-$\frac{b}{{a}^{2}-{b}^{2}}$£©¡Â$\frac{a}{a+b}$
£¨3£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{x}{x+2}$¡Â$\frac{{{x^2}-x}}{{{x^2}+4x+4}}$-$\frac{x}{x-1}$£¬ÆäÖÐx=1+$\sqrt{3}$£®
£¨4£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{{m}^{2}-2m+1}{{m}^{2}-1}$$¡Â£¨m-1-\frac{m-1}{m+1}£©$£¬Æäm=$\sqrt{3}$£®
·ÖÎö £¨1£©¸ù¾Ý·ÖʽµÄ¼Ó·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨2£©ÏÈ»¯¼òÀ¨ºÅÄÚµÄʽ×Ó£¬È»ºó¸ù¾Ý·ÖʽµÄ³ý·¨¿ÉÒÔ½â´ð±¾Ì⣻
£¨3£©¸ù¾Ý·ÖʽµÄ³ý·¨ºÍ¼õ·¨¿ÉÒÔ»¯¼òËùÇóµÄʽ×Ó£¬È»ºóxµÄÖµ´úÈë¼´¿É½â´ð±¾Ì⣻
£¨4£©ÏÈ»¯¼òÀ¨ºÅÄÚµÄʽ×Ó£¬È»ºó¸ù¾Ý·ÖʽµÄ³ý·¨¿ÉÒÔ»¯¼òËùÇóµÄʽ×Ó£¬È»ºó½«mµÄÖµ´úÈë¼´¿É½â´ð±¾Ì⣮
½â´ð ½â£º£¨1£©$\frac{2x}{x-2}+\frac{4}{2-x}$
=$\frac{2x-4}{x-2}$
=$\frac{2£¨x-2£©}{x-2}$
=2£»
£¨2£©£¨$\frac{1}{a-b}$-$\frac{b}{{a}^{2}-{b}^{2}}$£©¡Â$\frac{a}{a+b}$
=$\frac{a+b-b}{£¨a-b£©£¨a+b£©}¡Á\frac{a+b}{a}$
=$\frac{a}{£¨a-b£©£¨a+b£©}¡Á\frac{a+b}{a}$
=$\frac{1}{a-b}$£»
£¨3£©$\frac{x}{x+2}$¡Â$\frac{{{x^2}-x}}{{{x^2}+4x+4}}$-$\frac{x}{x-1}$
=$\frac{x}{x+2}¡Á\frac{£¨x+2£©^{2}}{x£¨x-1£©}-\frac{x}{x-1}$
=$\frac{x+2}{x-1}-\frac{x}{x-1}$
=$\frac{2}{x-1}$£¬
µ±x=1+$\sqrt{3}$£¬
Ôʽ=$\frac{2}{1+\sqrt{3}-1}=\frac{2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$£®
£¨4£©$\frac{{m}^{2}-2m+1}{{m}^{2}-1}$$¡Â£¨m-1-\frac{m-1}{m+1}£©$
=$\frac{£¨m-1£©^{2}}{£¨m+1£©£¨m-1£©}¡Â\frac{£¨m-1£©£¨m+1£©-£¨m-1£©}{m+1}$
=$\frac{m-1}{m+1}¡Â\frac{m£¨m-1£©}{m+1}$
=$\frac{m-1}{m+1}¡Á\frac{m+1}{m£¨m-1£©}$
=$\frac{1}{m}$£¬
µ±m=$\sqrt{3}$ʱ£¬Ôʽ=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$£®
µãÆÀ ±¾Ì⿼²é¶þ´Î¸ùʽµÄ»¯¼òÇóÖµ¡¢·ÖʽµÄ»¯¼òÇóÖµ£¬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ËüÃǵļÆËã·½·¨£®