题目内容

13.如图,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
(1)证明:△ACD≌△BCE;
(2)求∠AEB的度数.

分析 (1)先由等边三角形的性质判断出∠ACD=∠BCE,再用SAS判断出结论;
(2)由(1)结论得到∠ADC=∠BEC,再用邻补角求出∠AEB的度数.

解答 解:(1)∵△ACB和△DCE均为等边三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB-∠DCB=∠DCE-∠DCB,
∴∠ACD=∠BCE,
在△ACD和△BCE中,$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$
∴△ACD≌△BCE,
(2)由(1)得,△ACD≌△BCE,
∴∠ADC=∠BEC,
∵∠ADC+∠CDE=180°,∠CDE=60°,
∴∠ADC=120°,
∴∠BEC=120°,
∴∠AEB=∠BEC-∠CED=120°-60°=60°.

点评 此题是全等三角形的判定与性质,主要考查了等边三角形的性质,邻补角,解本题的关键是判断出∠ACD=∠BCE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网