题目内容

8.如图,在矩形ABCD中,点E、F分别在AB,CD边上,连接CE、AF,DF=BE,证明四边形AECF是平行四边形.

分析 根据矩形的性质得出DC=AB,DC∥AB,求出FC=AE,根据平行四边形的判定得出即可.

解答 证明:∵四边形ABCD是矩形,
∴DC=AB,DC∥AB,
∵DF=BE,
∴DC-DF=AB-BE,
∴FC=AE,
∵DC∥AB,即FC∥AE,
∴四边形AECF是平行四边形.

点评 本题考查了矩形的性质和平行四边形的判定的应用,能灵活运用定理进行推理是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网