题目内容
二次函数图象的顶点在原点O,经过点A(1,
);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.
(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等边三角形时,求P点的坐标.
![]()
解答:(1)解:∵二次函数图象的顶点在原点O,
∴设二次函数的解析式为y=ax2,
将点A(1,
)代入y=ax2得:a=
,
∴二次函数的解析式
为y=
x2;
(2)证明:∵点P在抛物线y=
x2上,
∴可设点P的坐标为(x,
x2),
过点P作P
B⊥y轴于点B,则BF=
x2﹣1,PB=x,
∴Rt△BPF中,
PF=
=
x2+1,
∵PM⊥直线y=﹣1,
∴PM=
x2+1,
∴PF=PM,
∴∠PFM=∠PMF,
又∵PM∥x轴,
∴∠MFH=∠PMF,
∴∠PFM=∠MFH,
∴FM平分∠OFP;
(3)解:当△FPM是等边三角形时,∠PMF=60°,
∴∠FMH=30°,
在Rt△MFH中,MF=2FH=2×2=4,
∵PF=PM=FM,
∴
x2+1=4,
解得:x=±2
,
∴
x
2=
×12=3,
∴满足条件的点P的坐标为(2
,3)或(﹣2
,3).
![]()
练习册系列答案
相关题目