题目内容
2.如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB‖ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)分析 过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG中,根据三角函数可求CG,再根据FG=FC+CG即可求解.
解答
解:过C点作FG⊥AB于F,交DE于G.
∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,
∴∠ACF=∠FCD-∠ACD=∠CGD+∠CDE-∠ACD=90°+12°-80°=22°,
∴∠CAF=68°,
在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,
在Rt△CDG中,CG=CD•sin∠CDE≈0.42m,
∴h=0.42+0.74=1.156≈1.2(米),
答:手柄的一端A离地的高度h约为1.2m.
点评 此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.
练习册系列答案
相关题目
17.
如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是( )
| A. | 4 | B. | 6 | C. | 8 | D. | 5 |
7.
如图,已知直线CD∥AB,若∠DFE=130°,则∠ABE的度数为( )
| A. | 30° | B. | 50° | C. | 60° | D. | 130° |