题目内容
7.| A. | $\frac{1}{3}$ | B. | $\frac{6}{17}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{10}}}{10}$ |
分析 过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.
解答
解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
∵∠CAD+∠ACD=90°,
∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
在等腰直角△ABC中,AC=BC,
在△ACD和△CBE中,
$\left\{\begin{array}{l}{∠CAD=∠BCE}\\{∠ADC=∠BEC=90°}\\{AC=BC}\end{array}\right.$,
∴△ACD≌△CBE(AAS),
∴CD=BE=1,
∴DE=3,
∴tan∠α=$\frac{1}{3}$.
故选A.
点评 本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关题目
12.
如图所示的几何体,它的左视图是( )
| A. | B. | C. | D. |
16.下列各式能用完全平方式进行分解因式的是( )
| A. | x2+1 | B. | x2+2x-1 | C. | x2+x+1 | D. | ${x^2}-x+\frac{1}{4}$ |