题目内容
17.(1)求证:FC=GC;
(2)求证:四边形EDBG是矩形.
分析 (1)证明△AOD≌△EOF,得到∠ODF=∠OFD,根据OD∥BC,得到∠FGC=∠ODF,得到∠CFG=∠FGC,得到答案;
(2)证明∠EGC=∠EFC=90°,根据三个角是直角是四边形是矩形得到答案.
解答 证明(1)∵AC为直径,∴∠ABC=90°,
∵OD∥BC,∴∠ADO=∠ABC=90°,
在△AOD和△EOF中,
$\left\{\begin{array}{l}{∠AOD=∠EOF}\\{∠ADO=∠EFO}\\{OA=OE}\end{array}\right.$
∴△AOD≌△EOF,
∴OD=OF,![]()
∴∠ODF=∠OFD,
∵OD∥BC,∴∠FGC=∠ODF,
又∠GFC=∠OFD,
∴∠CFG=∠FGC,
∴FC=GC;
(2)连接AE、EC,
∵OA=OE,∴∠OAE=∠OEA,
∵OD=OF,∴∠ODF=∠OFD,
∴∠OAE=∠OFD,
∴AE∥DG,
∵AC为直径,∴∠AEC=90°,又CF=CG,
∴CE是FG的垂直平分线,
∴△EFC≌△EGC,
∴∠EGC=∠EFC=90°,
又∠EDB=90°,∠ABC=90°,
∴四边形EDBG是矩形.
点评 本题考查的是三角形的外接圆、矩形的判定,正确运用直径所对的圆周角是直角、半径相等证明三角形全等是解题的关键,解答时,注意构造直径所对的圆周角.
练习册系列答案
相关题目
9.为了了解我市15000名学生的视力情况,抽查了解1000名学生的视力进行统计分析,下列四个判断正确的是( )
| A. | 15000名学生是总体 | |
| B. | 样本容量是1000名 | |
| C. | 每名学生是总体的一个样本 | |
| D. | 1000名学生的视力是总体的一个样本 |
6.在锐角△ABC中,|sinA-$\frac{\sqrt{3}}{2}$|+(cosB-$\frac{\sqrt{2}}{2}$)2=0,则∠C的度数是( )
| A. | 30° | B. | 45° | C. | 60° | D. | 75° |
7.
如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的直角顶点C在l1上,另两个顶点A、B分别在l2、l3上,则tanα的值是( )
| A. | $\frac{1}{3}$ | B. | $\frac{6}{17}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{10}}}{10}$ |