题目内容
已知:A=x3+2x2y+2y3-1,B=3+y3+2x2y+2x3,若A+B+C=0,求C.
考点:整式的加减
专题:
分析:根据A+B+C=0,可得出C=-A-B,代入即可得出C的值.
解答:解:∵A+B+C=0,
∴C=-A-B,
∵A=x3+2x2y+2y3-1,B=3+y3+2x2y+2x3,
∴C=-(x3+2x2y+2y3-1)-(3+y3+2x2y+2x3)
=-x3-2x2y-2y3+1-3-y3-2x2y-2x3
=-3x3-4x2y-3y3-2.
∴C=-A-B,
∵A=x3+2x2y+2y3-1,B=3+y3+2x2y+2x3,
∴C=-(x3+2x2y+2y3-1)-(3+y3+2x2y+2x3)
=-x3-2x2y-2y3+1-3-y3-2x2y-2x3
=-3x3-4x2y-3y3-2.
点评:本题考查整式的加减.
注意:去括号法则:--得+,-+得-,++得+,+-得-.
注意:去括号法则:--得+,-+得-,++得+,+-得-.
练习册系列答案
相关题目