题目内容
8.| A. | $\left\{\begin{array}{l}{x+1>0}\\{4-x>0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+1>0}\\{x-4>0}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x+1<0}\\{x-4>0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+1<0}\\{4-x>0}\end{array}\right.$ |
分析 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
解答 解:A、的解集是-1<x<4,故A符合题意;
B、的解集是x>4,故B不符合题意;
C、无解,故C不符合题意;
D、的解集是x<-1,故D不符合题意;
故选:A.
点评 本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
练习册系列答案
相关题目