题目内容
6.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:$\frac{x-2}{x+1}$>0,$\frac{2x+3}{x-1}$<0等.那么如何求出它们的解集呢?
根据有理数除法法则可知:两数相除,同号得正,异号得负.据此可知不等式$\frac{x-2}{x+1}$>0,可变成$\left\{\begin{array}{l}{x-2>0}\\{x+1>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-2<0}\\{x+1<0}\end{array}\right.$,再解这两个不等式组,得x>2或x<-1.
(1)不等式$\frac{2x+3}{x-1}$<0,可变成不等式组$\left\{\begin{array}{l}{2x+3<0}\\{x-1>0}\end{array}\right.$或$\left\{\begin{array}{l}{2x+3>0}\\{x-1<0}\end{array}\right.$;
(2)解分式不等式$\frac{2x-3}{4+x}$<0.
分析 (1)根据两数相除,同号得正,异号得负得出即可;
(2)先求出每个不等式组的解集,即可得出答案.
解答 解:(1)不等式$\frac{2x+3}{x-1}$<0,可变成不等式组$\left\{\begin{array}{l}{2x+3<0}\\{x-1>0}\end{array}\right.$或$\left\{\begin{array}{l}{2x+3>0}\\{x-1<0}\end{array}\right.$,
故答案为:成不等式组$\left\{\begin{array}{l}{2x+3<0}\\{x-1>0}\end{array}\right.$,$\left\{\begin{array}{l}{2x+3>0}\\{x-1<0}\end{array}\right.$;
(2)解$\left\{\begin{array}{l}{2x+3<0}\\{x-1>0}\end{array}\right.$得:此不等式组无解;
解$\left\{\begin{array}{l}{2x+3>0}\\{x-1<0}\end{array}\right.$得:-$\frac{3}{2}$<x<-1;
所以不等式$\frac{2x-3}{4+x}$<0的解集是-$\frac{3}{2}$<x<-1.
点评 本题考查了解一元一次不等式组,除法法则的应用,能求出不等式组的解集是解此题的关键.
练习册系列答案
相关题目