题目内容
如图所示,此正方体的展开图是图②中的( )
A. B. C. D.
当x=3时,代数式px3+qx+1的值为2002,则当x=-3时,代数式px3+qx+1的值为( )
A. 2000 B. -2002 C. -2000 D. 2001
如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.
(1)请在图4中画出拼接后符合条件的平行四边形;
(2)请在图2中,计算裁剪的角度(即∠ABM的度数).
【答案】(1)作图见解析;(2)∠ABM=30°.
【解析】分析:(1)将图4中的△ABE向左平移30cm,△CDF向右平移30cm,拼成如图中的平行四边形,此平行四边形即为图2中的四边形ABCD.
(2)根据题意先求得AB=30cm,由纸带的宽为15cm,根据三角函数求得∠AMB=30°.
本题解析:(1)如图:
(2)由图2的包贴方法知:AB的长等于三棱柱的底边周长,∴AB=30.
∵ 纸带宽为15,∴ sin∠ABM =.∴∠AMB=30°.
【题型】解答题【结束】11
如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H.
(1)求证: ;
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFFQ与△ABC重叠部分的面积为S,求S与t的函数关系式.
小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是___枚.
已知, ,且,则的值等于__________
射线OC在∠A0B内部,下列条件中不能确定OC是∠AOB的角平分线的是( )
A. ∠A0C=∠BOC B. ∠AOC+∠BOC=∠AOB C. ∠AOB= 2∠A0C D. ∠BOC=∠AOB
如图,C是线段AE上一点,△ABC、△CDE都是等边三角形,AD与BC交于点M,BE与CD交于点N。
试说明:(1)AD=BE;(2)MN//AE。
在下列条件中,能断定△ABC为等腰三角形的是( )
A. ∠A=30°,∠B=60° B. ∠A=50°,∠B=80°
C. AB=AC=2,BC=4 D. AB=3,BC=7,周长为18
计算题:(1);(2)