题目内容
2.分析 如图作AM⊥CO交CP的延长线于M,AN⊥BP交BP的延长线于N.由Rt△APM≌Rt△APN,推出PM=PN,由Rt△ABN≌Rt△ACM,推出BN=CM,可得PB=PC.
解答 证明:如图作AM⊥CO交CP的延长线于M,AN⊥BP交BP的延长线于N.![]()
∵∠APB=∠APC,
∴∠APM=∠APN,
∵AM⊥PM,AN⊥PN,
∴AM=AN,
在Rt△△APM和Rt△APN中,
$\left\{\begin{array}{l}{AP=AP}\\{AM=AN}\end{array}\right.$,
∴Rt△APM≌Rt△APN,
∴PM=PN,
在Rt△ABN和Rt△ACM中,
$\left\{\begin{array}{l}{AB=AC}\\{AN=AM}\end{array}\right.$,
∴Rt△ABN≌Rt△ACM,
∴BN=CM,∵PN=PM,
∴PB=PC.
点评 本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.
练习册系列答案
相关题目
14.下列化简正确的是( )
| A. | $\sqrt{6}$÷$\sqrt{3}$=$\sqrt{2}$ | B. | $\sqrt{(-2)^{2}}$=-2 | C. | ($\sqrt{5}$)2=25 | D. | $\sqrt{16}$=±4 |
11.下列四个角中,∠1、∠2是同位角的有( )

| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
12.方程组$\left\{\begin{array}{l}{x-y=2}\\{2x+y=10}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=5}\\{y=3}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-4}\\{y=2}\end{array}\right.$ |