题目内容

5.解下列不等式组:
(1)$\left\{\begin{array}{l}{x-2<0}\\{2(x-1)+3≥3x}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-3(x-2)<0}\\{\frac{1+2x}{3}>x-1}\end{array}\right.$
(3)$\left\{\begin{array}{l}{x-5>1+2x}\\{3x+2<4x}\end{array}\right.$
(4)$\left\{\begin{array}{l}{x-2(x-3)≤8}\\{\frac{x}{2}-(x-3)>\frac{1}{4}}\end{array}\right.$.

分析 (1)、(2)、(3)、(4)分别求出各不等式的解集,再求出其公共解集即可.

解答 解:(1)$\left\{\begin{array}{l}x-2<0①\\ 2(x-1)+3≥3x②\end{array}\right.$,由①得,x<2,由②得,x≤1,
故不等式组得解集为:x≤1;

(2)$\left\{\begin{array}{l}x-3(x-2)<0①\\ \frac{1+2x}{3}>x-1②\end{array}\right.$,由①得,x>3,由②得,x<4,故不等式组的解集为:3<x<4;

(3)$\left\{\begin{array}{l}x-5>1+2x①\\ 3x+2<4x②\end{array}\right.$,由①得,x<-6,由②得,x>2,故不等式组无解;

(4)$\left\{\begin{array}{l}x-2(x-3)≤8①\\ \frac{x}{2}-(x-3)>\frac{1}{4}②\end{array}\right.$,由①得,x≥-2,由②得,x<$\frac{11}{2}$,故不等式组的解集为:-2≤x<$\frac{11}{2}$.

点评 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网