题目内容

11.如图,已知在△ABC中,∠A=40°,将一块直角三角板放在△ABC上使三角板的两条直角边分别经过B、C,直角顶点D落在△ABC的内部,那么∠ABD+∠ACD=50度.

分析 根据三角形内角和定理可得∠ABC+∠ACB=180°-∠A=140°,∠DBC+∠DCB=180°-∠DBC=90°,进而可求出∠ABD+∠ACD的度数.

解答 解:在△ABC中,∵∠A=40°,
∴∠ABC+∠ACB=180°-40°=140°,
在△DBC中,∵∠BDC=90°,
∴∠DBC+∠DCB=180°-90°=90°,
∴∠ABD+∠ACD=140°-90°=50°;
故答案是:50.

点评 本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网