题目内容
观察下面的变形规律(阅读材料):
①
=1-
,
=
-
,
=
-
,…,
②
=
(1-
),
=
(
-
),
=
(
-
),…;….
解答下面的问题:
(1)若n为正整数,请你猜想
= ;
(2)受(1)小问启发,请你解方程:
+
=2;
(3)若n为正整数,请你猜想
= .
①
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
②
| 1 |
| 1×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5×7 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
解答下面的问题:
(1)若n为正整数,请你猜想
| 1 |
| n(n+1) |
(2)受(1)小问启发,请你解方程:
| 1 |
| x(x+1) |
| 1 |
| x+1 |
(3)若n为正整数,请你猜想
| 1 |
| n(n+3) |
考点:分式的加减法,解分式方程
专题:阅读型
分析:(1)根据①中式子的变化得出
的值;
(2)利用①中变化规律进而化简分式,进而解分式方程求出即可;
(3)利用①②中式子变化规律进而猜想得出答案.
| 1 |
| n(n+1) |
(2)利用①中变化规律进而化简分式,进而解分式方程求出即可;
(3)利用①②中式子变化规律进而猜想得出答案.
解答:解:(1)∵
=1-
,
=
-
,
=
-
,…,
∴
=
-
;
故答案为:
-
;
(2)
+
=2,
∴
-
+
=2,
∴
=2,
解得:x=
,
检验:当x=
时,x(x+1)≠0,
∴x=
是原方程的根;
(3)∵①
=1-
,
=
-
,
=
-
,…,
②
=
(1-
),
=
(
-
),
=
(
-
),…;
∴
=
(
-
).
故答案为:
(
-
).
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
∴
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
故答案为:
| 1 |
| n |
| 1 |
| n+1 |
(2)
| 1 |
| x(x+1) |
| 1 |
| x+1 |
∴
| 1 |
| x |
| 1 |
| x+1 |
| 1 |
| x+1 |
∴
| 1 |
| x |
解得:x=
| 1 |
| 2 |
检验:当x=
| 1 |
| 2 |
∴x=
| 1 |
| 2 |
(3)∵①
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
②
| 1 |
| 1×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5×7 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
∴
| 1 |
| n(n+3) |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+3 |
故答案为:
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+3 |
点评:此题主要考查了数据变化规律以及分式的加减以及分式方程的解法,根据已知得出数据变化规律是解题关键.
练习册系列答案
相关题目