题目内容

如图:以△ABC中的AB、AC为边分别向外作正方形ADEB、ACGF,连接DC、BF
(1)观察图形,利用旋转的观点说明:△ADC绕着点
 
旋转
 
°得到△ABF;
(2)猜想:CD与BF有怎样的数量关系和位置关系?并证明你的猜想.(相关知识链接:正方形的四条边都相等,四个角都是直角)
考点:旋转的性质,全等三角形的判定与性质,正方形的性质
专题:
分析:(1)因为AD=AB,AC=AF,∠DAC=∠BAF=90°+∠BAC,故△ABF可看作△ADC绕A点逆时针旋转90°得到;
(2)要求两条线段的长度关系,把两条线段放到两个三角形中,利用三角形的全等求得两条线段相等;根据全等三角形的对应角相等以及直角三角形的两锐角互补,即可证得∠NMC=90°,可证得证BF⊥CD.
解答:解:(1)根据正方形的性质可得:AD=AB,AC=AF,
∠DAB=∠CAF=90°,
∴∠DAC=∠BAF=90°+∠BAC,
∴△DAC≌△BAF(SAS),
故△ADC可看作△ABF绕A点逆时针旋转90°得到.
故答案为:A逆时针,90°;

(2)DC=BF,DC⊥BF.
理由:在正方形ABDE中,AD=AB,∠DAB=90°,
又在正方形ACGF,AF=AC,∠FAC=90°,
∴∠DAB=∠FAC=90°,
∵∠DAC=∠DAB+∠BAC,
∠FAB=∠FAC+∠BAC,
∴∠DAC=∠FAB,
在△DAC和△FAB中
AD=AB
∠DAC=∠BAF
AC=AF

∴△DAC≌△FAB(SAS),
∴DC=FB,∠AFN=∠ACD,
又∵在直角△ANF中,∠AFN+∠ANF=90°,∠ANF=∠CNM,
∴∠ACD+∠CNM=90°,
∴∠NMC=90°
∴BF⊥CD,
即CD与BF的数量关系是BF=CD和位置关系是BF⊥CD.
点评:本题考查了旋转的性质,正方形的性质及三角形全等的性质,关键是根据图形中两个三角形的位置关系解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网