题目内容
20.平面内有不重合的4条直线,请指出这4条直线交点个数的所有情况,并画出相应的草图.分析 从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.
解答 解:(1)当四条直线平行时,无交点,
(2)当三条平行,另一条与这三条不平行时,有3个交点,
(3)当两两直线平行时,有4个交点,
(4)当有两条直线平行,而另两条不平行时,有5个交点,
(5)当四条直线同交于一点时,只有1个交点,
(6)当四条直线两两相交,且不过同一点时,有6个交点,
(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,
(8)当三条直线交于一点,第四条直线与其它三条直线有三个交点时,共有4个交点,![]()
故4条直线交点个数为:0或1或3或4或5或6.
点评 本题考查了平行线与相交线的位置关系,没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案.
练习册系列答案
相关题目
12.
我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂分家万事非”,如图:在边长为1的正方形纸板上,依次贴上面积为$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,…,$\frac{1}{{2}^{n}}$的长方形彩色纸片(n为大于1的整数),请你用“数形结合”的思想,依数形变化的规律,计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+$\frac{1}{{2}^{n}}$=( )
| A. | $\frac{9}{8}$ | B. | $\frac{5}{4}$ | C. | $\frac{17}{16}$ | D. | 1-$\frac{1}{{2}^{n}}$ |