题目内容

如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(  )

A. 3cm B. 4cm C. 5cm D. 8cm

B 【解析】试题解析:∵?ABCD的周长为26cm, ∴AB+AD=13cm,OB=OD, ∵△AOD的周长比△AOB的周长多3cm, ∴(OA+OD+AD)-(OA+OB+AB)=AD-AB=3cm, ∴AB=5cm,AD=8cm. ∴BC=AD=8cm. ∵AC⊥AB,E是BC中点, ∴AE=BC=4cm. 故选B.
练习册系列答案
相关题目

如图,在?ABCD中,点E,F在对角线AC上,且AE=CF.求证:

(1)DE=BF;

(2)四边形DEBF是平行四边形.

详见解析. 【解析】 试题分析:(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可. 试题解析:(1)∵四边形ABCD是平行四边形, ∴AD∥CB,AD=CB, ∴∠DAE=∠BCF, 在△ADE和△CBF中, ∴△AD...

如图,?ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是(  )

A. 10 B. 14 C. 20 D. 22

B 【解析】试题分析:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选B.

已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.

(1)求证:△ABF≌△CDE;

(2)如图,若∠1=65°,求∠B的大小.

(1)证明见解析;(2)50°. 【解析】试题分析:(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果. 试题解析:(1)∵四边形ABCD是平行四边形, ∴AB=CD,AD∥BC,∠B=∠D, ∴∠1=∠DCE...

如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )

A.4 B.8 C.2 D.4

D. 【解析】 试题分析:在RT△ABF中,∠AFB=90°,AD=DB,DF=4,利用直角三角形斜边中线性质可得AB=2DF=8,再由AD=DB,AE=EC,可得DE∥BC,∠ADE=∠ABF=30°,所以AF=AB=4,由勾股定理可得BF=4.故选D.

如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是( )

A.5 B.7 C.8 D.10

D. 【解析】 试题分析:∵AB=4,BC=6,DE、DF是△ABC的中位线,∴DE=AB=2,DF=BC=3,DE∥BF,DF∥BE,∴四边形BEDF为平行四边形,∴四边形BEDF的周长为:2×2+3×2=10,故选D.

平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);

(1)求抛物线的表达式;

(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.

(1)y=2x2﹣8x+6;(2)向下平移6个单位. 【解析】试题分析:(1)利用待定系数法直接求出抛物线的解析式; (2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k. 试题解析:【解析】 (1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x...

抛物线y=x2+bx+c与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C.

(1)求该抛物线的解析式;

(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;

(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

(1).(2)点A/的坐标为(﹣3,4).点A/在该抛物线上.(3)点P运动到时,四边形PACM是平行四边形. 【解析】试题分析:(1)将点A、B的坐标代入抛物线的解析式,得到关于b、c的二元一次方程组,从而可解得b、c的值; (2)过点B′作B′E⊥x轴于E,BB′与OC交于点F.由平行于y轴的直线上各点横坐标相同可知点C的横坐标为2,将x=2代入直线y=﹣2x的解析式可求得点C的坐...

如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同,正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),小孔顶点N距水面4.5m(即NC=4.5m),当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.

水面宽度为10m 【解析】试题分析:设大孔抛物线的解析式为一般式形式,把点A(-10,0)代入解析式解得a=,因此函数解析式为,再由NC=4.5,可知点E,F的纵坐标,代入解析式即可求出点E,F的横坐标,继而可以求出EF. 试题解析:设抛物线的解析式为y=ax2+6,依题意得:B(10,0), ∴a×102+6=0,解得a=-0.06,即y=-0.06x2+6, 当y=4....

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网