题目内容

如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )

A.4 B.8 C.2 D.4

D. 【解析】 试题分析:在RT△ABF中,∠AFB=90°,AD=DB,DF=4,利用直角三角形斜边中线性质可得AB=2DF=8,再由AD=DB,AE=EC,可得DE∥BC,∠ADE=∠ABF=30°,所以AF=AB=4,由勾股定理可得BF=4.故选D.
练习册系列答案
相关题目

在数轴上表示不等式≥-2的解集,正确的是( )

A. B. C. D.

C 【解析】试题解析:∵不等式x≥-2中包含等于号, ∴必须用实心圆点, ∴可排除A、B, ∵不等式x≥-2中是大于等于, ∴折线应向右折, ∴可排除D. 故选C.

如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件_________

(只添一个即可),使四边形ABCD是平行四边形

BO=DO 【解析】【解析】 ∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.故答案为:BO=DO.

如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.

(1)请判断四边形EBGD的形状,并说明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.

(1)四边形EBGD是菱形,理由见解析;(2). 【解析】试题分析:(1)四边形EBGD是菱形,根据已知条件易证△EFD≌△GFB,可得ED=BG,所以BE=ED=DG=GB,即可判定四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题. 试题解析:(1)四边形EBGD是菱形. 理由:...

如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.

(1)若AB=DC,则四边形ABCD的面积S=__;

(2)若AB>DC,则此时四边形ABCD的面积S′__S(用“>”或“=”或“<”填空).

(1)15;(2)=. 【解析】试题分析:(1)∵AB=DC,AB∥DC, ∴四边形ABCD是平行四边形, ∴四边形ABCD的面积S=5×3=15, (2)如图,连接EC,延长CD、BE交于点P, ∵E是AD中点, ∴AE=DE, 又∵AB∥CD, ∴∠ABE=∠P,∠A=∠PDE, 在△ABE和△DPE中, ∵, ∴△ABE≌△D...

如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(  )

A. 3cm B. 4cm C. 5cm D. 8cm

B 【解析】试题解析:∵?ABCD的周长为26cm, ∴AB+AD=13cm,OB=OD, ∵△AOD的周长比△AOB的周长多3cm, ∴(OA+OD+AD)-(OA+OB+AB)=AD-AB=3cm, ∴AB=5cm,AD=8cm. ∴BC=AD=8cm. ∵AC⊥AB,E是BC中点, ∴AE=BC=4cm. 故选B.

如图,抛物线经过A(﹣1,0),B(5,0),C(0, )三点.

(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

(1)y=x2﹣2x﹣;(2)P(2,﹣);(3)点N的坐标为(4,﹣),(2+, )或(2﹣, ). 【解析】试题分析:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c...

在二次函数y=ax2+bx+c中,如果a>0,b<0,c>0,那么它的图象一定不经过(  )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

C 【解析】【解析】 ①∵a>0、c>0,∴该抛物线开口方向向上,且与y轴交于正半轴; ②∵a>0,b<0,∴二次函数y=ax2+bx+c的函数图象的对称轴是x=﹣>0,∴二次函数y=ax2+bx+c的函数图象的对称轴在第一象限; 综合①②,二次函数y=ax2+bx+c的图象一定不经过第三象限. 故选C.

一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是(  )

A. 摸到红球是必然事件

B. 摸到白球是不可能事件

C. 摸到红球与摸到白球的可能性相等

D. 摸到红球比摸到白球的可能性大

D 【解析】利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可. 【解析】 A.摸到红球是随机事件,故此选项错误; B.摸到白球是随机事件,故此选项错误; C.摸到红球比摸到白球的可能性相等, 根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误; D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网