题目内容

如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同,正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),小孔顶点N距水面4.5m(即NC=4.5m),当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.

水面宽度为10m 【解析】试题分析:设大孔抛物线的解析式为一般式形式,把点A(-10,0)代入解析式解得a=,因此函数解析式为,再由NC=4.5,可知点E,F的纵坐标,代入解析式即可求出点E,F的横坐标,继而可以求出EF. 试题解析:设抛物线的解析式为y=ax2+6,依题意得:B(10,0), ∴a×102+6=0,解得a=-0.06,即y=-0.06x2+6, 当y=4....
练习册系列答案
相关题目

如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(  )

A. 3cm B. 4cm C. 5cm D. 8cm

B 【解析】试题解析:∵?ABCD的周长为26cm, ∴AB+AD=13cm,OB=OD, ∵△AOD的周长比△AOB的周长多3cm, ∴(OA+OD+AD)-(OA+OB+AB)=AD-AB=3cm, ∴AB=5cm,AD=8cm. ∴BC=AD=8cm. ∵AC⊥AB,E是BC中点, ∴AE=BC=4cm. 故选B.

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )

A.图象关于直线x=1对称

B.函数y=ax2+bx+c(a≠0)的最小值是﹣4

C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根

D.当x<1时,y随x的增大而增大

D 【解析】 试题分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断. 【解析】 A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意; B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数y=ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意; C、...

“抛一枚均匀硬币,落地后正面朝上”这一事件是(  )

A. 必然事件 B. 随机事件 C. 确定事件 D. 不可能事件

B 【解析】根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断: 抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件. 故选B.

一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是(  )

A. 摸到红球是必然事件

B. 摸到白球是不可能事件

C. 摸到红球与摸到白球的可能性相等

D. 摸到红球比摸到白球的可能性大

D 【解析】利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可. 【解析】 A.摸到红球是随机事件,故此选项错误; B.摸到白球是随机事件,故此选项错误; C.摸到红球比摸到白球的可能性相等, 根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误; D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到...

一个图形无论经过平移变换,还是经过旋转变换,下列说法正确的是(  )

①对应线段平行

②对应线段相等

③图形的形状和大小都没有发生变化

④对应角相等.

A. ①②③ B. ②③④ C. ①②④ D. ①③④

B 【解析】【解析】 ①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误; ②无论平移还是旋转,对应线段相等,故本小题正确; ③无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确; ④无论平移还是旋转,对应角相等,故本小题正确. 综上所述,说法正确的是②③④. 故选B.

已知:如图,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD=1:2,那么CE是AB边上的中线对吗?说明理由.

见解析 【解析】试题分析:先求出∠ACD=30°,∠BCD=60°,然后根据角平分线的定义求出∠DCE=∠BCE=30°,再根据直角三角形两锐角互余求出∠B,∠A,从而得到∠A=∠ACE,∠B=∠BCE,根据等角对等边的性质可得AE=EC,BE=EC,然后求出AE=BE,即可得解. 试题解析:CE是AB边上的中线。 理由:∵∠ACB=90°,∠ACD:∠BCD=1:2, ∴...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网