甲、乙原有存款800元和1800元,从本月开始,甲每月存400元,乙每月存200元.如果设两人存款时间为x月.甲存款额是y1元,乙存款额是y2元.

(1)试写出y1与x及y2与x之间的函数关系式;

(2)到第几个月时,甲存款额能超过乙存款额?

详见解析 【解析】 试题分析:(1)根据存款数=原有存款+又存入的钱数,列式即可; (2)列出一元一次不等式,然后求解即可. 【解析】 (1)根据题意,甲:y1=400x+800, 乙:y2=200x+1800; (2)根据题意,400x+800>200x+1800, 解得x>5, 所以,从第6个月开始,甲存款额能超过乙存款额.

一个多边形的内角和是外角和的2倍,则这个多边形的边数为______.

6 【解析】∵多边形的外角和是360度,多边形的内角和是外角和的2倍, 则内角和是720度, 720÷180+2=6, ∴这个多边形是六边形, 故答案为:6.

如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上

(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;

(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

(1)见解析;(2)见解析. 【解析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO; (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论. 试题解析: 证明:(1)选取①②, ...

如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件_________

(只添一个即可),使四边形ABCD是平行四边形

BO=DO 【解析】【解析】 ∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.故答案为:BO=DO.

如图,在?ABCD中,AB=6,BC=8,∠BCD的平分线交AD于点E,交BA的延长线于点F,则AE+AF的值等于(   )

A. 2 B. 3 C. 4 D. 6

C 【解析】试题分析:由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.∵四边形ABCD是平行四边形, ∴AB∥CD,AD=BC=8,CD=AB=6, ∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB, ∴BF=BC=8, 同理:DE=CD=6, ∴A...

如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.

(1)请判断四边形EBGD的形状,并说明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.

(1)四边形EBGD是菱形,理由见解析;(2). 【解析】试题分析:(1)四边形EBGD是菱形,根据已知条件易证△EFD≌△GFB,可得ED=BG,所以BE=ED=DG=GB,即可判定四边形EBGD是菱形.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EMC中,求出EM、MC即可解决问题. 试题解析:(1)四边形EBGD是菱形. 理由:...

如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(  )

A. 3cm B. 4cm C. 5cm D. 8cm

B 【解析】试题解析:∵?ABCD的周长为26cm, ∴AB+AD=13cm,OB=OD, ∵△AOD的周长比△AOB的周长多3cm, ∴(OA+OD+AD)-(OA+OB+AB)=AD-AB=3cm, ∴AB=5cm,AD=8cm. ∴BC=AD=8cm. ∵AC⊥AB,E是BC中点, ∴AE=BC=4cm. 故选B.

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )

A.图象关于直线x=1对称

B.函数y=ax2+bx+c(a≠0)的最小值是﹣4

C.﹣1和3是方程ax2+bx+c=0(a≠0)的两个根

D.当x<1时,y随x的增大而增大

D 【解析】 试题分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断. 【解析】 A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意; B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数y=ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意; C、...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网