题目内容
7.甲乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,甲让乙先跑5米,设x秒后,甲可以追上乙,则下列方程不正确结果是( )| A. | 7x=6.5x+5 | B. | 7x-5=6.5 | C. | (7-6.5)x=5 | D. | 6.5x=7x-5 |
分析 根据题意可得等量关系:甲的跑步速度×跑步时间-5米=乙的跑步速度×跑步时间,根据等量关系列出方程即可.
解答 解:设x秒后,甲可以追上乙,由题意得:
7x-5=6.5x,
故选:D.
点评 此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.
练习册系列答案
相关题目
17.一艘轮船在两个码头间航行,顺水航行60km所需时间与逆水航行48km所需时间相同,已知船在静水中的速度为18km/h.若设水流速度为xkm/h,则列出的方程正确的是( )
| A. | $\frac{60}{x+18}$=$\frac{48}{x-18}$ | B. | $\frac{60}{18-x}$=$\frac{48}{18+x}$ | C. | $\frac{60}{18+x}$=$\frac{48}{18-x}$ | D. | 60(18+x)=48(x-18) |
12.使式子$\sqrt{x-2}$有意义的x的范围是( )
| A. | x≠2 | B. | x≤-2 | C. | x≥2 | D. | x≤2 |
19.已知直线y1=-2x+6与双曲线y2=$\frac{4}{x}$在同一坐标系的交点坐标是(1,4)和(2,2),则当y1>y2时,x的取值范围是( )
| A. | x<0或1<x<2 | B. | x<1 | C. | 0<x<1或x<0 | D. | x>2 |
16.
两枚正四面体骰子的各面上分别标有数字1,2,3,4,现在同时投掷这两枚骰子,并分别记录着地的面所得的点数为a、b.
(1)假设两枚正四面体都是质地均匀,各面着地的可能性相同,请你在下面表格内列举出所有情形(例如(1,2),表示a=1,b=2),并求出两次着地的面点数相同的概率.
(2)为了验证试验用的正四面体质地是否均匀,小明和他的同学取一枚正四面体进行投掷试验.试验中标号为1的面着地的数据如下:
请完成表格(数字精确到0.01),并根据表格中的数据估计“标号1的面着地”的概率是多少?
(1)假设两枚正四面体都是质地均匀,各面着地的可能性相同,请你在下面表格内列举出所有情形(例如(1,2),表示a=1,b=2),并求出两次着地的面点数相同的概率.
| b a | 1 | 2 | 3 | 4 |
| 1 | (1,2) | |||
| 2 | ||||
| 3 | ||||
| 4 |
| 试验总次数 | 50 | 100 | 150 | 200 | 250 | 500 |
| “标号1”的面着地的次数 | 15 | 26 | 34 | 48 | 63 | 125 |
| “标号1”的面着地的频率 | 0.3 | 0.26 | 0.23 | 0.24 |
17.
小明从上面观察如图所示的两个物体,看到的是( )
| A. | B. | C. | D. |