题目内容

7.如图,在△ABC中∠ABC=45°,CD⊥BA,BE⊥AC,F为BC中点,∠ABE=∠CBE
(1)线段BH与线段AC相等吗?若相等给予证明,若不相等,请说明理由.
(2)若AC=12,BC=10,求BG的长.

分析 (1)根据三角形的内角和定理求出∠BCD=∠ABC,∠ABE=∠DCA,推出DB=CD,根据ASA证出△DBH≌△DCA即可;
(2)根据DB=DC和F为BC中点,得出DF垂直平分BC,推出BG=CG,根据BE⊥AC和∠ABE=∠CBE得出AE=CE,在Rt△CGE中,由勾股定理即可推出答案.

解答 解:(1)线段BH与线段AC相等.
证明:∵CD⊥AB,BE⊥AC,
∴∠BDH=∠BEC=∠CDA=90°,
∵∠ABC=45°,
∴∠BCD=180°-90°-45°=45°=∠ABC,
∴DB=DC,
∵∠BDH=∠BEC=∠CDA=90°,
∴∠A+∠ACD=90°,∠A+∠HBD=90°,
∴∠HBD=∠ACD,
∵在△DBH和△DCA中,
$\left\{\begin{array}{l}{∠BDH=∠CDA}\\{BD=CD}\\{∠HBD=∠ACD}\end{array}\right.$,
∴△DBH≌△DCA(ASA),
∴BH=AC;

(2)如图,连接CG,
由(1)知,DB=CD,
∵F为BC的中点,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴△ABE≌△CBE,
∴EC=EA=6,
∵Rt△BCE中,BC=10,CE=6,
∴BE=8,
设BG=CG=x,则GE=8-x,
∴Rt△CEH中,62+(8-x)2=x2
∴x=$\frac{25}{4}$,
∴BG=$\frac{25}{4}$.

点评 本题考查了勾股定理,等腰三角形性质,全等三角形的性质和判定,线段的垂直平分线的性质的应用,注意:线段垂直平分线上的点到线段两端的距离相等,等腰三角形具有三线合一的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网