题目内容

14.如图,△ABC中,∠BAC=90°,AB=AC,D为AC上一点,DE⊥BC于E,连接BD,M在AB上,AM=AD,MN⊥BD交BC于点N,若MN=5,AE=5$\sqrt{2}$,求BC的长.

分析 连接AN,作MK⊥BC于K,连接DM、EM.只要证明△MBN∽△EBA,可得$\frac{BM}{AE}$=$\frac{BN}{AB}$=$\frac{MN}{AE}$=$\frac{5}{5\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,推出AB=$\sqrt{2}$BN,由∠ABC=45°,推出BN=NC,AN⊥BC,由$\frac{BN}{BM}$=$\frac{AB}{AE}$,∠ABN=∠EBM,推出△ABN∽△EBM,推出∠MEB=∠BAN=45°,推出MK=KE=DE=DM=EC=KB,KN=NE,设EN=a,则AN=NC=3a,在Rt△ANE中,可得a2+9a2=50,求出a即可解决问题.

解答 解:连接AN,作MK⊥BC于K,连接DM、EM.

∵∠BAD+∠BED=180°,
∴A、B、E、D四点共圆,
∴∠EBD=∠EAD,
∵∠EBD+∠BNM=90°,∠DAE+∠BAE=90°,
∴∠BNM=∠BAE,∵∠MBN=∠ABE,
∴△MBN∽△EBA,
∴$\frac{BM}{AE}$=$\frac{BN}{AB}$=$\frac{MN}{AE}$=$\frac{5}{5\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
∴AB=$\sqrt{2}$BN,
∵∠ABC=45°,
∴BN=NC,AN⊥BC,
∵$\frac{BN}{BM}$=$\frac{AB}{AE}$,∠ABN=∠EBM,
∴△ABN∽△EBM,
∴∠MEB=∠BAN=45°,
∴MK=KE=DE=DM=EC=KB,KN=NE,设EN=a,则AN=NC=3a,
在Rt△ANE中,a2+9a2=50,
∵a>0,
∴a=$\sqrt{5}$,
∴BC=6a=6$\sqrt{5}$.

点评 本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理.相似三角形的判定和性质,解得的突破点是证明点N是BC的中点,四边形DMKE是正方形,题目比较难,用到四点共圆.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网